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LETTER TO THE EDITOR 

Quantum gaps and classical orbits in a rotating 
two-dimensional harmonic oscillator 

R K Bhaduri, Shuxi Li, Kaori Tanaka and J C Waddington 
Department of Physics and Asuonomy, McMasier University, Hamiiton, Ontario, LBS 4MI. 
Cud?. 

Received 19 May 1994 

Abstract. The spectrum of a particle in a rotating two-dimensional harmonic oscillator is 
studied as a function of the cranking fcequency. The occurrence of energy gaps is linked to 
classical periodic orbits. Special attention is paid to the Farey fan pattern generated beyond the 
Landau limit. 

In this letter, we present the patterns of the quantum gaps that are formed in the energy 
spectrum of a rotating two-dimensional harmonic oscillator as the cranking frequency is 
varied. Although this mathematical model is very elementary and is fully solvable both 
quantum mechanically and classically, there are intriguing points that emerge from the 
study, particularly regarding the lifting of the degeneracies beyond the Landau level limit. 
Furthermore, this is perhaps the simplest quantum model that generates the Farey fan pattern 
[I], showing clearly the intimate connection between quantum gaps and classical periodic 
orbits [2]. 

Consider the two-dimensional motion of a particle on the xy-plane, governed by the 
Hamiltonian 

(1) 

The particle is in a harmonic oscillator of frequency Q, and the oscillator itself is rotating 
about the negative z-axis with a frequency w. Since the last term in (l), wl,, commutes with 
the harmonic oscillator Hamiltonian, the eigenspecaum of H may be immediately written 
down using polar coordinates 

H =  ~M(P:+P:)+~MQ*(X~+Y~)+~(XP~-YP*). 1 

E,,.1=(2n,+Ill+l)hQ+1Plw. (2) 

Here n, is the radial quantum number, with values nr = 0, 1,2, . . . , and hi is the angular 
momentum along the z-axis, with 1 = 0, +l ,  i 2 .  etc. In figure 1, the pattern of the 
energy levels generated by (2) is shown by varying the cranking frequency o in the range 
0 Q w 6 2Q, keeping the oscillator frequency Q fixed. We define - 

(3) 

and plot the energy levels as a function of the dimensionless quantity U in the range 
-; < U < in figure 1. The collapse of the single-particle states for w = Q into 
highly degenerate equally spaced levels is clearly seen, and these are called Landau 

w 
cj=(o-Q) u = -  

2Q 
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Figure 1. The energy specmm (2) of a cranked two-dimensional harmonic oscillator, shown 
3s a function of Y, a defined in (3). The Landau levels are formed at U = 0. 

levels 131 in the context of the motion of a charged particle in a uniform magnetic 
field. For such a particle (ignoring intrinsic spin), the Hamiltonian is HB = (1/2M)@ - 
(e /c)A)’ ,  where e is the charge, and p the mcmentum for motion in the ny-plane. 
The vector potential A = i (B  x T )  generates a transverse magnetic field B. Taking 
e = -[el, and the symmetric gauge, A = (-;By, $Bx,O), HB reduces to H of 
(1) for Q = w = w , / Z  where w, = IelBjEAc is called the cyclotron frequency. 
As is clear from figure 1, the collapsing single-particle states in the lowest Landau 
level all have aligned (but different) angular momenta, and originate from different 
shells of the harmonic oscillator. Although this result is well known in the literature, 
its diagrammatic depiction through a cranked oscillator is not commonly shown. The 
pattern in figure 1 for G > 0 is new, and its study will be the main topic of the 
letter. 

Even for the range -4 < U < 0, the convergence of the states to the Landau levels 
is preceded by a zig-zag repeating pattern of gaps. This is shown vividly for the higher 
excited states in figure 2. Note that the quantum gaps appear at those values of the cranking 
frequency for which o/Q is a rational number, a fact that links these gaps to the occurrence 
of classical periodic orbits. These may be easily seen by examining the solutions of the 
classical equations of motion. Using the variable z = n + iy, the two equations of motion 
may be written compactly as 

z = ( wz - ~ ’ ) z  + 2iwz. (4) 
Note that the first term on the right is an attractive harmonic force for w < Q, but becomes 
repulsive for cranking frequencies beyond the Landau levels. The general solution of (4) is 

(5) 
where A and B are constants. The two normal mode frequencies (for w # Q) are IQ - wl 
and (Q + 0). When the ratio of these frequencies is a rational fraction, a closed periodic 
orbit in the xy-plane is obtained. The accidental degeneracy of the corresponding quantum 

= ~ ~ i ( 0 - ’ 2 ) t  + Bei(a+W 
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Pigure 2. The same spectrum as figure 1, in the m g e  - f < Y < 0 for higher excitalion energies. 

problem (for f2 z w )  has been discussed by Louck et a1 [4]. Some of these periodic orbits 
are shown in figure 3 for various values of U. For the special case of w = Q, the solutions 
of (4) are given by circles in the xy-plane with arbitrary centres. The quantum analogue 
of this motion with coherent states is analysed in [5,6].  Apart from this case, the most 
prominent gaps occur in figures 1 and 2 for the simplest fractions. For example, the large 
gaps at v = 3 ~ 4  correspond to the situation when one normal mode frequency is twice the 
other. 

It is interesting to study the degeneracy of the levels for the situation when the cranking 
frequency w is greater than or equal to the oscillator frequency Q. For convenience, let 
us study the states converging at the energy of the lowest Landau level, E = EQ. At this 
energy, at w = Q, the nodeless (n, = 0, see (2))  angular momentum states of the largest 
negative values from each shell converge. The resulting degeneracy per unit area is easily 
calculated by summing the squares of the normalized 'stretched' single-particle states. This 
is found to be qo = ZM-Q/h, which equals eB/hc  if f2 is chosen to be w,/Z, leading 
to a well known result. Now let us proceed to examine, in figure 1, the degeneracies at 
the gaps to the right of the Landau levels. The repeating pattern in this region is known 
as a Farey fan [l], and has been studied in the context of number theory and continued 
fractions. At the energy E = hQ, inspection of the level at U = l/m (m an integer > 1) 
reveals that the number of converging single-particle states is exactly a fraction 1 / m  of the 
Landau level. For example, the successive harmonic oscillator states meeting at v = 4 at 
E = hQ have angular momenta l = 0, -3, -6, etc. in units of h (see figure 4). Thus, 
for every triplet of adjacent states in the lowest Landau level, e.g. (0, -1, -2). there is 
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Figure 3. The classical periodic orbils of a particle obeying (5 )  for various rational v ,  

one ( I  = 0 in this case) at Y = f .  Similarly, at Z/2Q = $, the degeneracyhrea is f v o .  
The collapsed single-particle states at such U = I / m  gaps are each from a separate Landau 
level, and have increasing number of nodes. For example, at U = i, the 1 = 0 state has 
no node, the next state with I = -5 has one node, the 1 = -10 state has two nodes, and 
so on. We may term the condensed levels at v = l/m as ‘mothers’, since these gaps rise 
to a succession of ‘daughters’ as seen in figure 4. One state from each quantum shell of 
the U = f mother converges at E = ha, constituting the daughter at I ,  just as the mother 
herself was formed from the collapse of the states from each Landau level. The Landau 
level, in turn, was formed by the collapse of the states from the separate oscillator shells. 
The single-particle states converging at the daughters have different nodal structures than 
ihe mothers. Consider, for example, the daughters at U = 3 and 4 at E = Ea that belong 
to the mother at U = i. Using equation (2), all the converging states at this energy obey 
the equation 

( 2 n , + I / j ) h S 2 + / h w = O .  (6) 
It immediately follows that the converging states at U = $ have n, = 2 for I = -5, 
n, = 4 for 1 = -10, etc. Similarly, for U = 7, n, = 3 for I = -7, n, = 6 for 
1 = -14, etc. A similar construction could be made with even-denominator mothers, 
but then the daughters have alternately even and odd denominators. The complexity of 
the structure in  the quantum states is reflected in the classical periodic orbits also, some 
of which are shown in figure 3. From this figure, note that the number of loops in 
the orbit is determined by the denominator q in U = p / q .  For example, both U = 
and Y = 5 have periodic orbits with five loops, but the U = 3 orbit has a more 
complicated structure. The denominator q of U = p/q also determines the magnitude 

3 

2 
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Figure 4. The 'mother-daughter' sequence of degenerate levels. One stale from each Landau 
level converges at v = f to form P mother. Similarly. one state fmm each shell at $ converges 
al f. Only a few converging lines are shown for clariry. In the triangle abf, the vertical lines 
ab and cd show the gaps at U = 1. and f .  respectively. 

of the quantum gap, as is apparent from figure 4. Denoting this gap by A, we see that at 
= P I %  

where hw, = 2hQ is the gap at the Landau levels. 
Finally it may be worth mentioning that the sequence of the gaps generated by this 

dynamical model for v > 0 are the same, for the odd denominators, as the Haldane 
hierarchy [7] in the fractional quantum Hall effect [8]. The hole-state sequences for 
the odd denominators in this hierarchy, e.g. (1, &, 6 , .  . .) are generated in our model 
by the convergence of lines from the lower side of the A, = 1 line (see figure 4). 
The FQHE states, however, have a very different structure than the ones that have been 
generated by our simple model. In FQHE. the single-particle states of the lowest Landau 
level get thoroughly mixed by the Coulomb interaction between the electrons, and have 
a highly correlated wavefunction of an incompressible quantum fluid [9]. There is 
little mixing of states from different Landau levels in such a state. By contrast, the 
wavefunction generated by our model has thorough inter-Landau level mixing, and has 
no two-body correlations. Nevertheless, it is interesting that a sequence of quantum gaps 
resembling the Haldane ones may be produced from an independent particle model that is 
integrable. 
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